MATH 610, HOPF ALGEBRAS, FALL 2011 (2ND REVISED)
HW # 1, DUE OCTOBER 10

1. Let A be a k-space of dimension n? and let C' = A*. Let

{eij ‘ i,j: 1,...,n}
be a basis of A and let
{Xij ’ i,jzl,...,n}
be a basis of C' dual to the ey, that is, X;;j(ex) = dixdji, all 4, j, k, L.
You may assume thatA is an (associative) algebra with multiplication
eij - exl = 0jpe; and unit element 14 =, e

(a) Check that C is a coalgebra with comultiplication and counit given
by

n
Ac(Xij) = Zsz & ij and Ec(Xij) = (51‘3‘.
k=1
(b) Prove that the coalgebra structure on C' is the dual of the algebra
structure on A.
Thus A = M,,(k), the usual algebra of n x n matrices over k, if and only
if C' = A* is the “matrix coalgebra” mentioned in class.

2. Let B = O(M,(k)) be the bialgebra of polynomial functions on M, (k).
That is, B = k[X;;] as polynomials in the Xj;, where the X;; act on M, (k)
as in Problem 1. B becomes a coalgebra by using the maps A, e on the Xj;
as in Problem 1 and extending them multiplicatively to B. Let X = [X;;] €
M, (B), the “generic” n X n matrix.

Prove that g = Det(X) € B is a group-like element (that is, €(g) = 1 and
A(g) = g ® g) but that g is not invertible in B. Conclude that B does not
have an antipode S. (Hint: use Problem 1 for a non-computational proof)

3. Let B be a bialgebra, and let P(B) denote the set of primitive elements
in B; that is,
PB)={z€B|A(z)=2®1+1®z and e(x) = 0.
(a) Check that P(B) becomes a Lie algebra by defining [z, y] = zy — yz,
for any =,y € P(B).
(b) For B = k%, G a group, show that f € P(B) <= f is a homomor-
phism from G to k, +, the additive group of k.

(c) If B is a finite-dimensional bialgebra of characteristic 0, show that
P(B) = 0. (This is non-trivial)
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4. Let k= C and let H = H4 be Sweedler’s 4-dim Hopf algebra. That is,

(1) H=lg,z|¢*=1,22=0,29g = —gz)
where A(g) =g®g, Alx) =2x®@1+g®@z,e(g) =1, e(x) =0, S(g) =g,
and S(z) = —g~ 1.

We claim that H* = H as Hopf algebras ; that is, we claim we may write
(2) H*=1(G,X |G*=¢,X*=0,XG = -GX)
where A(G) =GR G, AX)=X®e+GR X, eg«(G) = (G,1) =1, and
eg+(X) =(X,1) =0, S(G) =G, and S(X) = -GX.

To prove that H* = H, define G, X € H* on a basis of H by
(3) <G7 1> =1, <G7g> =-1, <G7 J}> =0, <G,g$> =0,

(4) (X,1) =(X,9)=0, (X,x) =1, (X,gz) = —1.
Using (3) and (4), show:

(a) XG = —GX in H*, where the product in H* is convolution. Note it
is enough to check this on a basis of H.

(b) A(G) = G®G and A(X) = X ®e+G® X. For this part, check their
action on a basis of H @ H.

5. Summation notation practice:

In a coalgebra C, the summation notation version of the properties of the
counit may be stated as

c= 25(01)02 = Z e(e2)cr.
(c) (c)
for any ¢ € C. Using this and coassociativity, show that for any ¢ € C,

(a) c =2 (peler) ®e(er) ® ez =3 eler)e(er)es.
(one assumes that the tensor products of scalars is just the product)

In a Hopf algebra H, the fact that the antipode S is the x-inverse of the
identity map id on H says that for all h € H,

D hiS(hg) =Y S(h)hg = e(h)1y.
(h) (h)

Using this, as well as other known properties of S, A, and &, show that
(b) 22y M1 @ (S(h2))hs = h® 1, for any h € H;
(c) 22(ny(1 @ S(h3)h1)AS(ha) = (S @ S)A(h), for any h € H.



