MATH 610, HOPF ALGEBRAS, FALL 2011 (2ND REVISED) HW \# 1, DUE OCTOBER 10

1. Let A be a k-space of dimension n^{2} and let $C=A^{*}$. Let

$$
\left\{e_{i j} \mid i, j=1, \ldots, n\right\}
$$

be a basis of A and let

$$
\left\{X_{i j} \mid i, j=1, \ldots, n\right\}
$$

be a basis of C dual to the $e_{k l}$, that is, $X_{i j}\left(e_{k l}\right)=\delta_{i k} \delta_{j l}$, all i, j, k, l.
You may assume that A is an (associative) algebra with multiplication $e_{i j} \cdot e_{k l}=\delta_{j k} e_{i l}$ and unit element $1_{A}=\sum_{i} e_{i i}$
(a) Check that C is a coalgebra with comultiplication and counit given by

$$
\Delta_{C}\left(X_{i j}\right)=\sum_{k=1}^{n} X_{i k} \otimes X_{k j} \text { and } \varepsilon_{C}\left(X_{i j}\right)=\delta_{i j} .
$$

(b) Prove that the coalgebra structure on C is the dual of the algebra structure on A.

Thus $A=M_{n}(k)$, the usual algebra of $n \times n$ matrices over k, if and only if $C=A^{*}$ is the "matrix coalgebra" mentioned in class.
2. Let $B=\mathcal{O}\left(M_{n}(k)\right)$ be the bialgebra of polynomial functions on $M_{n}(k)$. That is, $B=k\left[X_{i j}\right]$ as polynomials in the $X_{i j}$, where the $X_{i j}$ act on $M_{n}(k)$ as in Problem 1. B becomes a coalgebra by using the maps Δ, ε on the $X_{i j}$ as in Problem 1 and extending them multiplicatively to B. Let $\mathbb{X}=\left[X_{i j}\right] \in$ $M_{n}(B)$, the "generic" $n \times n$ matrix.

Prove that $g=\operatorname{Det}(\mathbb{X}) \in B$ is a group-like element (that is, $\varepsilon(g)=1$ and $\Delta(g)=g \otimes g)$ but that g is not invertible in B. Conclude that B does not have an antipode S. (Hint: use Problem 1 for a non-computational proof)
3. Let B be a bialgebra, and let $P(B)$ denote the set of primitive elements in B; that is,

$$
P(B)=\{x \in B \mid \Delta(x)=x \otimes 1+1 \otimes x \text { and } \varepsilon(x)=0 .
$$

(a) Check that $P(B)$ becomes a Lie algebra by defining $[x, y]=x y-y x$, for any $x, y \in P(B)$.
(b) For $B=k^{G}, G$ a group, show that $f \in P(B) \Longleftrightarrow f$ is a homomorphism from G to $k,+$, the additive group of k.
(c) If B is a finite-dimensional bialgebra of characteristic 0 , show that $P(B)=0$. (This is non-trivial)

Continued on other side
4. Let $k=\mathbb{C}$ and let $H=H_{4}$ be Sweedler's 4-dim Hopf algebra. That is,

$$
\begin{equation*}
H={ }_{k}\left\langle g, x \mid g^{2}=1, x^{2}=0, x g=-g x\right\rangle \tag{1}
\end{equation*}
$$

where $\Delta(g)=g \otimes g, \Delta(x)=x \otimes 1+g \otimes x, \varepsilon(g)=1, \varepsilon(x)=0, S(g)=g^{-1}$, and $S(x)=-g^{-1} x$.

We claim that $H^{*} \cong H$ as Hopf algebras ; that is, we claim we may write

$$
\begin{equation*}
H^{*}={ }_{k}\left\langle G, X \mid G^{2}=\varepsilon, X^{2}=0, X G=-G X\right\rangle \tag{2}
\end{equation*}
$$

where $\Delta(G)=G \otimes G, \Delta(X)=X \otimes \varepsilon+G \otimes X, \varepsilon_{H^{*}}(G)=\langle G, 1\rangle=1$, and $\varepsilon_{H^{*}}(X)=\langle X, 1\rangle=0, S(G)=G$, and $S(X)=-G X$.

To prove that $H^{*} \cong H$, define $G, X \in H^{*}$ on a basis of H by

$$
\begin{gather*}
\langle G, 1\rangle=1,\langle G, g\rangle=-1,\langle G, x\rangle=0,\langle G, g x\rangle=0 \tag{3}\\
\langle X, 1\rangle=\langle X, g\rangle=0,\langle X, x\rangle=1,\langle X, g x\rangle=-1 . \tag{4}
\end{gather*}
$$

Using (3) and (4), show:
(a) $X G=-G X$ in H^{*}, where the product in H^{*} is convolution. Note it is enough to check this on a basis of H.
(b) $\Delta(G)=G \otimes G$ and $\Delta(X)=X \otimes \varepsilon+G \otimes X$. For this part, check their action on a basis of $H \otimes H$.
5. Summation notation practice:

In a coalgebra C, the summation notation version of the properties of the counit may be stated as

$$
c=\sum_{(c)} \varepsilon\left(c_{1}\right) c_{2}=\sum_{(c)} \varepsilon\left(c_{2}\right) c_{1} .
$$

for any $c \in C$. Using this and coassociativity, show that for any $c \in C$,
(a) $c=\sum_{(c)} \varepsilon\left(c_{1}\right) \otimes \varepsilon\left(c_{2}\right) \otimes c_{3}=\sum_{(c)} \varepsilon\left(c_{1}\right) \varepsilon\left(c_{2}\right) c_{3}$.
(one assumes that the tensor products of scalars is just the product)
In a Hopf algebra H, the fact that the antipode S is the $*$-inverse of the identity map $i d$ on H says that for all $h \in H$,

$$
\sum_{(h)} h_{1} S\left(h_{2}\right)=\sum_{(h)} S\left(h_{1}\right) h_{2}=\varepsilon(h) 1_{H} .
$$

Using this, as well as other known properties of S, Δ, and ε, show that
(b) $\sum_{(h)} h_{1} \otimes\left(S\left(h_{2}\right)\right) h_{3}=h \otimes 1$, for any $h \in H$;
(c) $\sum_{(h)}\left(1 \otimes S\left(h_{3}\right) h_{1}\right) \Delta S\left(h_{2}\right)=(S \otimes S) \Delta(h)$, for any $h \in H$.

