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HW # 1, DUE OCTOBER 10

1. Let A be a k-space of dimension n2 and let C = A∗. Let

{eij | i, j = 1, . . . , n}
be a basis of A and let

{Xij | i, j = 1, . . . , n}
be a basis of C dual to the ekl, that is, Xij(ekl) = δikδjl, all i, j, k, l.

You may assume thatA is an (associative) algebra with multiplication
eij · ekl = δjkeil and unit element 1A =

∑
i eii

(a) Check that C is a coalgebra with comultiplication and counit given
by

∆C(Xij) =

n∑
k=1

Xik ⊗Xkj and εC(Xij) = δij .

(b) Prove that the coalgebra structure on C is the dual of the algebra
structure on A.

Thus A = Mn(k), the usual algebra of n× n matrices over k, if and only
if C = A∗ is the “matrix coalgebra” mentioned in class.

2. Let B = O(Mn(k)) be the bialgebra of polynomial functions on Mn(k).
That is, B = k[Xij ] as polynomials in the Xij , where the Xij act on Mn(k)
as in Problem 1. B becomes a coalgebra by using the maps ∆, ε on the Xij

as in Problem 1 and extending them multiplicatively to B. Let X = [Xij ] ∈
Mn(B), the “generic” n× n matrix.

Prove that g = Det(X) ∈ B is a group-like element (that is, ε(g) = 1 and
∆(g) = g ⊗ g) but that g is not invertible in B. Conclude that B does not
have an antipode S. (Hint: use Problem 1 for a non-computational proof)

3. Let B be a bialgebra, and let P (B) denote the set of primitive elements
in B; that is,

P (B) = {x ∈ B | ∆(x) = x⊗ 1 + 1⊗ x and ε(x) = 0.

(a) Check that P (B) becomes a Lie algebra by defining [x, y] = xy − yx,
for any x, y ∈ P (B).

(b) For B = kG, G a group, show that f ∈ P (B) ⇐⇒ f is a homomor-
phism from G to k,+, the additive group of k.

(c) If B is a finite-dimensional bialgebra of characteristic 0, show that
P (B) = 0. (This is non-trivial)
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4. Let k = C and let H = H4 be Sweedler’s 4-dim Hopf algebra. That is,

(1) H = k〈g, x | g2 = 1, x2 = 0, xg = −gx〉
where ∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x, ε(g) = 1, ε(x) = 0, S(g) = g−1,
and S(x) = −g−1x.

We claim that H∗ ∼= H as Hopf algebras ; that is, we claim we may write

(2) H∗ = k〈G,X | G2 = ε,X2 = 0, XG = −GX〉
where ∆(G) = G ⊗ G, ∆(X) = X ⊗ ε + G ⊗X, εH∗(G) = 〈G, 1〉 = 1, and
εH∗(X) = 〈X, 1〉 = 0, S(G) = G, and S(X) = −GX.

To prove that H∗ ∼= H, define G, X ∈ H∗ on a basis of H by

(3) 〈G, 1〉 = 1, 〈G, g〉 = −1, 〈G, x〉 = 0, 〈G, gx〉 = 0,

(4) 〈X, 1〉 = 〈X, g〉 = 0, 〈X,x〉 = 1, 〈X, gx〉 = −1.

Using (3) and (4), show:

(a) XG = −GX in H∗, where the product in H∗ is convolution. Note it
is enough to check this on a basis of H.

(b) ∆(G) = G⊗G and ∆(X) = X⊗ ε+G⊗X. For this part, check their
action on a basis of H ⊗H.

5. Summation notation practice:

In a coalgebra C, the summation notation version of the properties of the
counit may be stated as

c =
∑
(c)

ε(c1)c2 =
∑
(c)

ε(c2)c1.

for any c ∈ C. Using this and coassociativity, show that for any c ∈ C,
(a) c =

∑
(c) ε(c1)⊗ ε(c2)⊗ c3 =

∑
(c) ε(c1)ε(c2)c3.

(one assumes that the tensor products of scalars is just the product)

In a Hopf algebra H, the fact that the antipode S is the ∗-inverse of the
identity map id on H says that for all h ∈ H,∑

(h)

h1S(h2) =
∑
(h)

S(h1)h2 = ε(h)1H .

Using this, as well as other known properties of S, ∆, and ε, show that
(b)

∑
(h) h1 ⊗ (S(h2))h3 = h⊗ 1, for any h ∈ H;

(c)
∑

(h)(1⊗ S(h3)h1)∆S(h2) = (S ⊗ S)∆(h), for any h ∈ H.


