MATH 610, HOPF ALGEBRAS, FALL 2011 HW \#2, DUE NOVEMBER 14

1. (note: computations awful) Consider the n^{2}-dimensional Taft algebra $H=T_{n^{2}, \omega}$, for ω a fixed primitive $n^{\text {th }}$ root of 1 . That is,

$$
\begin{equation*}
H=k\left\langle g x \mid g^{n}=1, x^{n}=0, x g=\omega g x\right\rangle \tag{1}
\end{equation*}
$$

where $\Delta(g)=g \otimes g, \Delta(x)=x \otimes 1+g \otimes x, \varepsilon(g)=1$, and $\varepsilon(x)=0$. Similarly to the case $n=2$ on $\mathrm{HW} \# 1, H^{*} \cong H$; thus we may write

$$
\begin{equation*}
H^{*}=k\left\langle G, X \mid G^{n}=\varepsilon, X^{n}=0, X G=\omega G X\right\rangle \tag{2}
\end{equation*}
$$

where $\Delta(G)=G \otimes G, \Delta(X)=X \otimes \varepsilon+G \otimes X, \varepsilon_{H^{*}}(G)=\langle G, 1\rangle=1$, and $\varepsilon_{H^{*}}(X)=\langle X, 1\rangle=0$. The dual pairing between H and H^{*} is determined by

$$
\begin{equation*}
\langle G, g\rangle=\omega^{-1},\langle G, x\rangle=0,\langle X, g\rangle=0, \text { and }\langle X, x\rangle=1 \tag{3}
\end{equation*}
$$

Note that $\Gamma=x^{n-1}\left(\sum_{i=0}^{n-1} g^{i}\right)$ is a right integral of H and that $\lambda=$ $\left(\sum_{i=0}^{n-1} G^{i}\right) X^{n-1}$ is a left integral of H^{*}.

Find all the "Frobenius data" for H : that is, give a Frobenius system $\left\{f, r_{i}, l_{i}\right\}$ for H using $f=\lambda$, find the modular element $\beta \in H^{*}$, and then find the Nakayama automorphism η for H with respect to this system (recall that β is determined by $h \Gamma=\beta(h) \Gamma$, for all $h \in H)$.
2. Let G be a finite group and let $D(G)=k^{G} \bowtie k G$ be the Drinfel'd double of G. That is, as a coalgebra, $D(G)=k^{G} \otimes k G$ is the tensor product of k^{G} and $k G$. As an algebra, $D(G)$ is the semi-direct product $k^{G} \# k G$, where G acts on k^{G} by $g \cdot p_{x}=p_{g x g^{-1}}$.
(a) We know that $t=\sum_{g \in G} g$ is an integral in $k G$ and p_{1} is an integral in k^{G}. Show that $p_{1} \bowtie t$ is both a left and right integral in $D(G)$, and so $D(G)$ is unimodular.
(b) Note that since $D(G)$ is a tensor product of algebras, $D(G)^{*}$ is the tensor product of the algebras $\left(k^{G}\right)^{*}=k G$ and $(k G)^{*}=k^{G}$. Find an integral in $D(G)^{*}$.
(c) Find a set of "Frobenius data" for $D(G)$: that is, find a Frobenius system $\left\{f, r_{i}, l_{i}\right\}$ and the corresponding Nakayama automorphism ν of $D(G)$.

Continued \longrightarrow

3. A non-Frobenius algebra:

Let p be a prime >2 and let $G=C_{p} \times C_{p}$, where C_{p} is the cyclic group of order p. Let k be a field of characteristic p, and let $H=k G$, the group algebra.
(a) Show that the radical of H is $N=H^{+}=\operatorname{Ker}(\varepsilon)$ (and so N has codimension 1). Since $1-g \in H^{+}$for all $g \in G$, it then follows that $N^{2} \neq 0$.
(b) Show that the algebra $A=H / N^{2}$ is NOT a Frobenius algebra (hint: if it were Frobenius, then $A \cong A^{*}$ as left (and right) A-modules).
4. We consider the quantum version of $B=\mathcal{O}\left(M_{n}(k)\right)$ from HW \#1, when $n=2$. For a parameter $q, \mathcal{O}_{q}\left(M_{2}(k)\right)$, the coordinate ring of quantum $M_{2}(k)$, is defined as follows:

$$
\mathcal{O}_{q}\left(M_{2}(k)\right):=\langle a, b, c, d\rangle
$$

subject to the relations

$$
\begin{array}{lll}
b a=q^{-2} a b & c a=q^{-2} a c & b c=c b \\
d b=q^{-2} b d & d c=q^{-2} c d & a d-d a=\left(q^{2}-q^{-2}\right) b c
\end{array}
$$

Define a comultiplication and co-unit on $\mathcal{O}_{q}\left(M_{2}(k)\right)$ by

$$
\begin{array}{rll}
\Delta(a)=a \otimes a+b \otimes c, & \Delta(b)=a \otimes b+b \otimes d, \\
\Delta(c)=c \otimes a+d \otimes c, & \Delta(d)=c \otimes b+d \otimes d \\
\varepsilon(a)=\varepsilon(d)=1, & \varepsilon(b)=\varepsilon(c)=0 .
\end{array}
$$

Then $\mathcal{O}_{q}\left(M_{2}(k)\right)$ becomes a bialgebra by extending Δ and ε to $\mathcal{O}_{q}\left(M_{2}(k)\right)$ multiplicatively. If we write

$$
\tilde{X}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
\tilde{X}_{11} & \tilde{X}_{12} \\
\tilde{X}_{21} & \tilde{X}_{22}
\end{array}\right],
$$

the coproduct and co-unit are given by $\Delta\left(\tilde{X}_{i j}\right)=\sum_{k} \tilde{X}_{i k} \otimes \tilde{X}_{k j}$, and $\varepsilon\left(\tilde{X}_{i j}\right)=\delta_{i j}$, as for $\mathcal{O}\left(M_{2}(k)\right)$.
(a) The map $\Phi: \mathcal{O}\left(M_{2}(k)\right) \rightarrow \mathcal{O}_{q}\left(M_{2}(k)\right)$ given by $\Phi\left(X_{i j}\right)=\tilde{X}_{i j}$ on generators and extending multiplicatively on an ordered basis is a k-space isomorphism, since by Kassell p 81, $\left\{a^{i} b^{j} c^{s} d^{t}\right\}$ is a basis for $\mathcal{O}_{q}\left(M_{2}(k)\right)$. Show that it is not an isomorphism of coalgebras.
(b) Now define $\operatorname{det}_{q} X:=a d-q^{2} b c$. Check that $\operatorname{det}_{q} \tilde{X}$ is a group-like element which is not invertible (unlike the case $q=1$, I do not know an elegant argument for this). Thus as for $\mathcal{O}\left(M_{2}(k)\right), \mathcal{O}_{q}\left(M_{2}(k)\right)$ is not a Hopf algebra.

