CIMPA BOGOTÁ: HOPF ALGEBRAS MINI-COURSE

Homework #1

Let k be a field. Let H be a finite-dimensional Hopf algebra over k with:

- multiplication $m: H \otimes H \to H$,
- unit $u: k \to H$,
- comulitplication $\Delta: H \to H \otimes H$ with Heinemann-Sweedler notation

$$\Delta(h) = \sum h_{(1)} \otimes h_{(2)} \quad (h \in H)$$

- counit $\epsilon: H \to k$, and
- antipode $S: H \to H$.
- (1) (a) Show that S is the inverse of id_H in the convolution algebra Hom(H, H).
 (b) Show that m^{op} ∘ (S ⊗ S) and S ∘ m are right and left inverses, respectively, of m in the convolution algebra Hom(H ⊗ H, H).
- (2) $G(H^*) = \{\alpha | \Delta_{H^*}(\alpha) = \alpha \otimes \alpha\}$ is the group of group-like elements of the dual H^* . These satisfy $\alpha(ab) = \alpha(a)\alpha(b)$, hence an algebra homomorphisms $H \to k$. Show that $G(H^*)$ is isomorphic to the group of algebra homomorphisms $H \to k$.
- (3) Let $\operatorname{Rep}(H)$ be the category of the finite-dimensional representations over k, i.e. left *H*-modules.
 - (a) For $V, W \in \operatorname{Rep}(H)$, show that $V \otimes W \in \operatorname{Rep}(H)$ via the action given by Δ :

$$h \cdot (v \otimes w) = \sum h_{(1)} v \otimes h_{(2)} w$$

- (b) For $U, V, W \in \operatorname{Rep}(H)$, show that the vector space associativity isomorphism $(U \otimes V) \otimes W \to U \otimes (V \otimes W)$ is a map in $\operatorname{Rep}(H)$, i.e. is an *H*-module map. (Hint: this follows from coassociativity of Δ .)
- (c) Let $\mathbf{1} = k$ be the *H*-module with the action given by ϵ :

$$h \cdot 1_k = \epsilon(h) \quad (h \in H)$$

Show that $\mathbf{1} \otimes V \cong V \cong V \otimes \mathbf{1}$ are isomorphisms in $\operatorname{Rep}(H)$.

- (4) Show that, for any vector space V, the space $V \otimes H$ is a right Hopf module over H. (The *H*-action and *H*-coaction are defined from the multiplication and comultiplication of H, i.e. $id_V \otimes \Delta : V \otimes H \to V \otimes H \otimes H$.)
- (5) Show that H^* is a right Hopf module over H via the following action:

$$f \leftarrow a := S(a) \rightharpoonup f$$
$$(f \leftarrow a)(b) = f(bS(a))$$

and coaction:

$$\rho: H^* \to H^* \otimes H$$
$$f \mapsto \sum_{1} f^{(1)} \otimes f^{(2)}$$

where

$$g * f = \sum f^{(1)}g(f^{(2)}) \quad \forall g \in H^*$$

(6) Let Λ be a left integral of H. For $a \in H$ we have that Λa is still a left integral of H. Therefore $\Lambda a = \Lambda \alpha(a)$ for some $\alpha \in H^*$. Show that alpha is a group-like element of H^* .

Homework #2

- (1) Suppose $char(k) \neq 0$. It was shown by Etingof-Gelaki that if $tr(S^2) \neq 0$ then $S^2 = id_H$. Show that the converse statement is false.
- (2) Consider the isomorphism of finite dimensional vector spaces $j: V \to V^{**}$ given by $v \mapsto \hat{v}$ where $\hat{v}(f) = f(v)$ for $f \in V^*$ and $v \in V$. Now suppose $V \in \operatorname{Rep}(H)$ and show that j is a morphism in $\operatorname{Rep}(H)$ provided that $S^2 = \operatorname{id}_H$.
- (3) Consider the n^2 -dimensional Taft algebra $H = T_{n^2,\omega}$ defined as follows. Let ω be a primitive n^{th} root of unity. Then:

$$T_{n^2,\omega} = k \langle g, x | g^n = 1, x^n = 0, xg = \omega gx \rangle$$

with $\Delta(g) = g \otimes g$, $\Delta(x) = x \otimes 1 + g \otimes x$, $\epsilon(g) = 1$, $\epsilon(x) = 0$. Show that the non-zero left and right integrals of $T_{n^2,\omega}$ are linearly independent.

(4) Recall that if (H, R) is a quasi-triangular Hopf algebra then $\operatorname{Rep}(H)$ is braided. Show the converse: if $\operatorname{Rep}(H)$ admits a braiding $c_{V,W}: V \otimes W \to W \otimes V$ then $c_{H,H}(1 \otimes 1)^{op} = R$ a universal *R*-matrix for *H*.