CIMPA BOGOTÁ: HOPF ALGEBRAS MINI-COURSE

Homework \#1

Let k be a field. Let H be a finite-dimensional Hopf algebra over k with:

- multiplication $m: H \otimes H \rightarrow H$,
- unit $u: k \rightarrow H$,
- comulitplication $\Delta: H \rightarrow H \otimes H$ with Heinemann-Sweedler notation

$$
\Delta(h)=\sum h_{(1)} \otimes h_{(2)} \quad(h \in H)
$$

- counit $\epsilon: H \rightarrow k$, and
- antipode $S: H \rightarrow H$.
(1) (a) Show that S is the inverse of id_{H} in the convolution algebra $\operatorname{Hom}(H, H)$.
(b) Show that $m^{o p} \circ(S \otimes S)$ and $S \circ m$ are right and left inverses, respectively, of m in the convolution algebra $\operatorname{Hom}(H \otimes H, H)$.
(2) $G\left(H^{*}\right)=\left\{\alpha \mid \Delta_{H^{*}}(\alpha)=\alpha \otimes \alpha\right\}$ is the group of group-like elements of the dual H^{*}. These satisfy $\alpha(a b)=\alpha(a) \alpha(b)$, hence an algebra homomorphisms $H \rightarrow k$. Show that $G\left(H^{*}\right)$ is isomorphic to the group of algebra homomorphisms $H \rightarrow k$.
(3) Let $\operatorname{Rep}(H)$ be the category of the finite-dimensional representations over k, i.e. left H-modules.
(a) For $V, W \in \operatorname{Rep}(H)$, show that $V \otimes W \in \operatorname{Rep}(H)$ via the action given by Δ :

$$
h \cdot(v \otimes w)=\sum h_{(1)} v \otimes h_{(2)} w
$$

(b) For $U, V, W \in \operatorname{Rep}(H)$, show that the vector space associativity isomorphism $(U \otimes V) \otimes W \rightarrow U \otimes(V \otimes W)$ is a map in $\operatorname{Rep}(H)$, i.e. is an H-module map. (Hint: this follows from coassociativity of Δ.)
(c) Let $\mathbf{1}=k$ be the H-module with the action given by ϵ :

$$
h \cdot 1_{k}=\epsilon(h) \quad(h \in H)
$$

Show that $\mathbf{1} \otimes V \cong V \cong V \otimes \mathbf{1}$ are isomorphisms in $\operatorname{Rep}(H)$.
(4) Show that, for any vector space V, the space $V \otimes H$ is a right Hopf module over H. (The H-action and H-coaction are defined from the multiplication and comultiplication of H, i.e. $\operatorname{id}_{V} \otimes \Delta: V \otimes H \rightarrow V \otimes H \otimes H$.)
(5) Show that H^{*} is a right Hopf module over H via the following action:

$$
\begin{gathered}
f \leftharpoondown a:=S(a) \rightharpoonup f \\
(f \leftharpoondown a)(b)=f(b S(a))
\end{gathered}
$$

and coaction:

$$
\begin{aligned}
\rho: H^{*} & \rightarrow H^{*} \otimes H \\
f & \mapsto \sum_{1} f^{(1)} \otimes f^{(2)}
\end{aligned}
$$

where

$$
g * f=\sum f^{(1)} g\left(f^{(2)}\right) \quad \forall g \in H^{*}
$$

(6) Let Λ be a left integral of H. For $a \in H$ we have that Λa is still a left integral of H . Therefore $\Lambda a=\Lambda \alpha(a)$ for some $\alpha \in H^{*}$. Show that alpha is a group-like element of H^{*}.

Homework \#2

(1) Suppose $\operatorname{char}(k) \neq 0$. It was shown by Etingof-Gelaki that if $\operatorname{tr}\left(S^{2}\right) \neq 0$ then $S^{2}=\operatorname{id}_{H}$. Show that the converse statement is false.
(2) Consider the isomorphism of finite dimensional vector spaces $j: V \rightarrow V^{* *}$ given by $v \mapsto \hat{v}$ where $\hat{v}(f)=f(v)$ for $f \in V^{*}$ and $v \in V$. Now suppose $V \in \operatorname{Rep}(H)$ and show that j is a morphism in $\operatorname{Rep}(H)$ provided that $S^{2}=\mathrm{id}_{H}$.
(3) Consider the n^{2}-dimensional Taft algebra $H=T_{n^{2}, \omega}$ defined as follows. Let ω be a primitive $n^{\text {th }}$ root of unity. Then:

$$
T_{n^{2}, \omega}=k\left\langle g, x \mid g^{n}=1, x^{n}=0, x g=\omega g x\right\rangle
$$

with $\Delta(g)=g \otimes g, \Delta(x)=x \otimes 1+g \otimes x, \epsilon(g)=1, \epsilon(x)=0$. Show that the non-zero left and right integrals of $T_{n^{2}, \omega}$ are linearly independent.
(4) Recall that if (H, R) is a quasi-triangular Hopf algebra then $\operatorname{Rep}(H)$ is braided. Show the converse: if $\operatorname{Rep}(H)$ admits a braiding $c_{V, W}: V \otimes W \rightarrow$ $W \otimes V$ then $c_{H, H}(1 \otimes 1)^{o p}=R$ a universal R-matrix for H.

